MATHEMATICS SPECIALIST

MAWA Semester 2 (Unit 1 & Unit 2) Examination 2017

Calculator-free

Marking Key

© MAWA, 2017

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing them how the work is marked but students are not to retain a copy of the paper or marking guide until the agreed release date stipulated in the purchasing agreement/licence.

The release date for this exam and marking scheme is

• the end of week 6 of term 4, 2017

2 CALCULATOR-FREE SEMESTER 2 (UNIT 1 & UNIT 2) EXAMINATION

Section One: Calculator-free

(50 Marks)

Question 1(a)

Solution
$$a = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$$
 and $b = \begin{pmatrix} 1 \\ 7 \end{pmatrix}$ $\Rightarrow a - 3b = \begin{pmatrix} 3 \\ -2 \end{pmatrix} - 3 \begin{pmatrix} 1 \\ 7 \end{pmatrix} = \begin{pmatrix} 0 \\ -23 \end{pmatrix}$ Marking key/mathematical behavioursMarks• calculates and uses vectors in component form1

Question 1(b)

Solution	
$ a = \sqrt{3^2 + (-2)^2} = \sqrt{13}$	
Marking key/mathematical behaviours	Marks
 calculates the magnitude of a vector 	1

Question 1(c)

Solution	
$\widehat{a} = \frac{1}{\sqrt{13}} \begin{pmatrix} 3 \\ -2 \end{pmatrix}$	
Marking key/mathematical behaviours	Marks
Uses the magnitude of a vector	1
Uses the scalar multiple of a vector	1

Question 1(d)

Solution	
$c = \underline{a} \times \widehat{\underline{b}} = \sqrt{13} \times \frac{1}{5\sqrt{2}} \begin{pmatrix} 1 \\ 7 \end{pmatrix}$	
$=\frac{\sqrt{13}}{5\sqrt{2}}\times \begin{pmatrix}1\\7\end{pmatrix}$	
Marking key/mathematical behaviours	Marks
• uses the magnitude vector \underline{a}	1
• represents \underline{c} a scalar multiple of vector \underline{b}	1

Question 2

Solution	
Position vectors of A, B and C = $\begin{pmatrix} 3 \\ -1 \end{pmatrix}$, $\begin{pmatrix} -1 \\ 15 \end{pmatrix}$ and $\begin{pmatrix} 9 \\ -25 \end{pmatrix}$,	
$\Rightarrow AB = \begin{pmatrix} -4\\ 16 \end{pmatrix}, AC = \begin{pmatrix} 6\\ -24 \end{pmatrix}$	
$ \begin{pmatrix} -4 \\ 16 \end{pmatrix} = \lambda \begin{pmatrix} 6 \\ -24 \end{pmatrix} $	
$\Rightarrow AB / /AC \left(\text{where } \lambda = \frac{-2}{3} \right)$	
$\Leftrightarrow ABC$ is a straight line	
Marking key/mathematical behaviours	Marks
calculates column vector AB	1
calculates column vector AC	1
• represents <i>AB</i> as a scalar multiple of a vector <i>AC</i>	1
examines scale factors of the vectors and determines they are parallel	1

Question 3(a)

Solution	
$2x^2 + 6x + 5 = 0$	
$x = \frac{-6 \pm \sqrt{6^2 - 4(2)(5)}}{4}$	
$x = \frac{-6 \pm 2i}{4}$	
$x = \frac{-3 \pm i}{2}$	
Marking key/mathematical behaviours	Marks
Determines the two complex roots	2

Question 3(b)

Solution	
$\frac{3+i}{7i-1} \times \frac{7i+1}{7i+1} = \frac{-4+22i}{-49-1}$	
$7i-1^{7}i+1^{-49-1}$	
-4+22i	
-2+11i	
=	
Marking key/mathematical behaviours	Marks
uses the correct term to rationalise the quotient	1
determines the simplified result	1

Question 4

Solution	
$RTP: \ \overline{\left(\frac{z}{w}\right)} = \frac{\overline{z}}{\overline{w}} \Leftrightarrow \overline{\left(\frac{a+bi}{c+di}\right)} = \left(\frac{a-bi}{c-di}\right)$	
$\overline{\left(\frac{a+bi}{c+di}\right)} = \overline{\left(\frac{a+bi}{c+di} \times \frac{c-di}{c-di}\right)}$	
$=\overline{\left(rac{ac+bd+(bc-ad)i}{c^2+d^2} ight)}$	
$=\frac{ac+bd-(bc-ad)i}{c^2+d^2}$	
$=\frac{ac-bci+bd+adi}{c^2+d^2}$	
$=\frac{c \ a-ib \ +id \ a-bi}{c+di \ c-di}$	
$= \frac{a-bi}{c-di} \times \frac{c+di}{c+di}$	
$=\left(rac{a-bi}{c-di} ight)$	
Marking key/mathematical behaviours	Marks
• sets up the expression $\overline{\left(\frac{z}{w}\right)}$ for left hand side in terms of <i>a</i> , <i>b</i> , <i>c</i> & <i>d</i>	1
 modifies the expression by rationalizing the denominator calculates the conjugate term 	1 1
• factorises the previous expression to obtain the expression $\frac{\overline{z}}{\overline{w}}$	1

Question 5(a)

Solution	
The number of ways to arrange the couple and teenage daughter = 3!	
Treating the couple and daughter as 1 unit, the number of ways to arrange the persons/unit = 4!	9 4
Hence, the number of ways of the 6 people forming a queue	
=3\\x4!	
= 6 x 24	
= 144	
Marking key/mathematical behaviours	Marks
• indicates that the number of ways to arrange the couple and teenage	
daughter = 3! and treating the couple and daughter as 1 unit, number of	1
ways to arrange 4 persons/unit = 4!	
determines the correct value	1

Question 5(b)

Solution	
r - 8 + r = 20	
r = 14	
Marking key/mathematical behaviours	Marks
• determines that $r-8+r=20$ for equation to be true and determines the	1
correct value for r	

Question 5(c)

Solution	
$\frac{m!}{\left(m - \left(m - 4\right)\right)!} = 210$	
$\frac{m!}{4!} = 210$	
$m! = 210 \times 4!$	
$m! = 7 \times 6 \times 5 \times 4!$	
$m!=7!$ $\therefore m=7$	
Marking key/mathematical behaviours	Marks
• states the correct equation for ${}^{m}P_{m-4}$	1
• determines the correct value for <i>m</i>	1

Question 5(d)

Solution	
Number of arrangements such that all letters are different = ${}^{8}P_{4} = {}^{8}C_{4} \times 4! = 1680$	
Number of arrangements such that there is 1 pair of repeated letters =	
$^{2}C_{1} \times {}^{6}C_{2} \times {}^{4}P_{2} = 2 \times 15 \times 12 = 360$	
Number of arrangements with 2 pairs of repeated letters = $\frac{4!}{2!2!} = 6$	
Total number of arrangements = 1680+360+6=2046	
Marking key/mathematical behaviours	Marks
Determines the correct number of arrangements for all different letters	1
Determines the correct number of arrangements with 1 pair of repeated	
letters	1
Determines the correct number of arrangements with 2 pairs of repeated	
letters	1

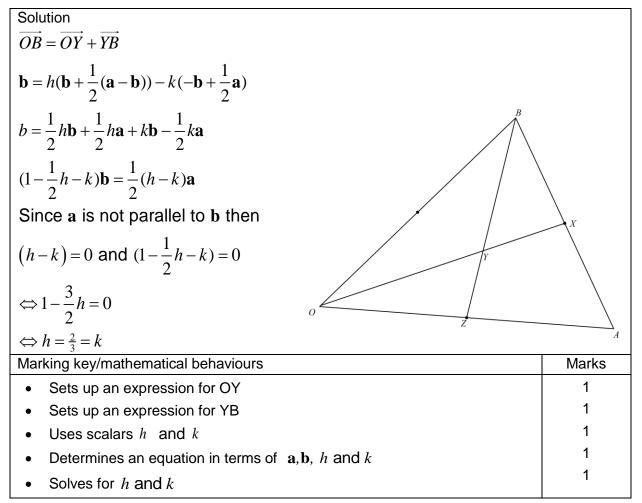
Question 6(a)

Solution	
$LHS = \frac{1}{\tan x} - \frac{1}{\tan 2x}$	
$=\frac{\cos x}{\cos 2x}$	
$\sin x \sin 2x$	
$=\frac{\cos x}{\cos x}-\frac{\left(2\cos^2 x-1\right)}{\cos^2 x}$	
$\sin x 2\sin x \cos x$	
$=\frac{\cos x.2\cos x-(2\cos^2 x-1)}{2\cos^2 x-1}$	
$2\sin x\cos x$	
$= \frac{2\cos^2 x - 2\cos^2 x + 1}{2\cos^2 x + 1}$	
$2\sin x\cos x$	
$=$ $\frac{1}{1}$	
$2\sin x\cos x$	
$-\sin 2x$	
$= \csc 2x$	
Marking key/mathematical behaviours	Marks
• expresses tan x and cot x in terms of sin x and cos x	1
• expresses sin 2 x and cos 2 x in terms of sin x and cos x	1
simplifies and equates to the RHS correctly	1

Question 6(b)

Solution	
$\sqrt{2}\cos x + \sqrt{2}\sin x = R\cos(x-\alpha)$	
$= R(\cos x \cos \alpha + \sin x \sin \alpha)$	
$= 2(\cos x \cos \alpha + \sin x \sin \alpha) \text{ where } R = 2$	
$= 2\left(\cos x \frac{1}{\sqrt{2}} + \sin x \frac{1}{\sqrt{2}}\right) \text{ where } \cos \alpha = \sin \alpha = \frac{1}{\sqrt{2}}$	
$=2\cos\left(x-\frac{\pi}{4}\right)$	
Marking key/mathematical behaviours	Marks
• determines the correct value for <i>R</i>	1
• determines the correct value for α	1

Question 7



8 CALCULATOR-FREE SEMESTER 2 (UNIT 1 & UNIT 2) EXAMINATION

Question 8(a)

Solution	
Given $A = \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix} \Rightarrow Det A = 2 - 12 = -10$	
$A^{-1} = -\frac{1}{10} \begin{bmatrix} 2 & -3 \\ -4 & 1 \end{bmatrix}$	
Marking key/mathematical behaviours	Marks
evaluates the determinant	1
modifies the matrix elements correctly	1

Question 8(b)

Solution	
$AX = \begin{bmatrix} 13 \\ 2 \end{bmatrix}$	
$\Leftrightarrow X = A^{-1} \begin{bmatrix} 13 \\ 2 \end{bmatrix}$	
$\Leftrightarrow \begin{bmatrix} x \\ y \end{bmatrix} = -\frac{1}{10} \begin{bmatrix} 2 & -3 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} 13 \\ 2 \end{bmatrix}$	
$\Leftrightarrow \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -2 \\ 5 \end{bmatrix}$	
Marking key/mathematical behaviours	Marks
expresses as matrix equation	1
pre-multiplies by inverse	1
obtains a matrix expression for unknowns	1

Question 9(a)

$ \begin{bmatrix} Solution \\ 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} -2 & -1 \\ -1 & 0 \end{bmatrix} $	
Marking key/mathematical behaviours	Marks
determines reflection matrix	1
determines shear matrix	1
multiplies in correct order	1

Question 9(b)

Solution	
Determinant = -1 Hence the area is unchanged = $\frac{1}{2}(7)(5) = 17.5$	
Marking key/mathematical behaviours	Marks
 states determinant = -1 	1
determines original area	1

Question 9(c)

Solution	
$\begin{bmatrix} -2 & -1 \\ -1 & 0 \end{bmatrix}^{-1} = \frac{1}{-1} \begin{bmatrix} 0 & 1 \\ 1 & -2 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ -1 & 2 \end{bmatrix}$	
Marking key/mathematical behaviours	Marks
a coloulated the determinent	1
calculates the determinant	•